ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD (Department of Mathematics and Statistics)

WARNING

1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE.
2. SUBMITTING ASSIGNMENTS BORROWED OR STOLEN FROM OTHER(S) AS ONE'S OWN WILL BE PENALIZED AS DEFINED IN "AIOU PLAGIARISM POLICY".

Course: Mathematics-I (1309)

Level: F.A/F.Sc
Total Marks: 100

Semester: Spring, 2013
Pass Marks: 40

ASSIGNMENT No. 1

(Unit: 1-5)
Note: Attempt all questions and each question carries equal marks.
Q. 1 (a) Find the approximate increase in the area of a circular disc if its diameter is increased from 44 cm to 44.4 cm .
(b) Evaluate the following indefinite integrals.
(i) $\int \frac{(\sqrt{\theta}-1)^{2}}{\sqrt{\theta}} d \theta \quad(\theta>0)$
(ii) $\int \frac{e^{2 x}+e^{x}}{e^{x}} d x$
(c) Evaluate

$$
\int \frac{d x}{\sqrt{7-6 x-x^{2}}}
$$

Q. 2 (a) Evaluate the following definite integrals.
(i) $\int_{0}^{\frac{\pi}{2}} \frac{\cos \theta+\sin \theta}{\cos 2 \theta+1} d \theta$
(ii)
$\int_{0}^{\frac{\pi}{4}} \cos ^{4} t d t$
(b) Find the area bounded by the curve $y=x^{3}-4 x$ and the x-axis.
(c) Solve the following differential equation:
$x d y+y(x-1) d x=0$
Q. 3 (a) Show that
$\int e^{a x} \sin b x d x=\frac{1}{\sqrt{a^{2}+b^{2}}} e^{a x} \sin \left(b x-\tan ^{-1} \frac{b}{a}\right)+c$.
(b) Evaluate
(i) $\int \sqrt{4-5 x^{2}} d x$
(ii) $\int x^{2} e^{a x} d x$
(c) Evaluate the integral:
$\int \frac{x+4}{x^{3}-3 x^{2}+4} d x$
Q. 4 (a) Find the interior angles of the triangle whose vertices are $\mathrm{A}(2,-5), \mathrm{B}(-4,-3), \mathrm{C}(-1,5)$
(b) Find the area of the region bounded by: $10 x^{2}-x y-21 y^{2}=0$ and $x+y+1=0$
(c) Evaluate $\int \frac{2 x}{x^{2}-a^{2}} d x, \quad(x>a)$
Q. 5 (a) Find the point which is equidistant from the points A (5, 3), B ($-2,2$) and C $(4,2)$. What is the radius of the circumcircle of the $\triangle A B C$?
(b) Find an equation of the perpendicular bisector of the segment joining the points A $(3,5), \mathrm{B}(9,8)$.
(c) Find the general solution of the equation: $\frac{d y}{d x}-x=x y^{2}$

Also find the particular solution if $y=1$ when $x=0$

ASSIGNMENT No. 2

(Unit: 5-9)

Note: Attempt all questions and each question carries equal marks.

Q. 1 (a) Prove that the midpoint of the hypotenuse of a right triangle is the circumcentre of the triangle.
(b) A parabolic arch has a 100 m base and height 25 m . Find the height of the arch at the point 30 m from the centre of the base.
(c) Prove that the latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$
Q. 2 (a) Maximize the function defined as; $f(x, y)=2 x+3 y$ subject to the constraints:
$2 x+y \leq 8 ; \quad x+2 y \leq 14 ; \quad x \geq 0, \quad y \geq 0$
(b) Show that the circles
$x^{2}+y^{2}+2 x-2 y-7=0$ and $x^{2}+y^{2}-6 x+4 y-9=0$ touch externally
(c) Find the length of the chord cut off from the line $2 x+3 y=13$ by the circle $x^{2}+y^{2}=26$
Q. 3 (a) For any point on a hyperbola the difference of its distances from the points $(2,2)$ and $(10,2)$ is 6 . Find an equation of the hyperbola.
(b) Find equations of the tangents to the conic $9 x^{2}-4 y^{2}=36$ parallel to $5 x-2 y+7=0$
Q. 4 (a) Prove that perpendicular bisectors of the sides of a triangle are concurrent.
(b) If $a+b+c=0$, then prove that $a \times b=b \times c=c \times a$
(c) A force of magnitude 6 units acting parallel to $2 i-2 j+k$ displaces, the point of application from $(1,2,3)$ to $(5,3,7)$. Find the work done.
Q. 5 (a) Show that
(i) $10 x y+8 x-15 y-12=0$ and
(ii) $6 x^{2}+x y-y^{2}-21 x-8 y+9=0$
each represent a pair of straight lines and find an equation of each line.
(b) Find the vector from the point A to the origin where $\overrightarrow{A B}=4 i-2 j$ and B is the point $(-2,5)$.
(c) Find α, so that $|\alpha i+(\alpha+1) j+2 k|=3$

